
The zkVot Protocol: A Distributed Computation Protocol for

Censorship Resistant Anonymous Voting

Yunus Gürlek
yunus@node101.io

Kadircan Bozkurt
kadircan@node101.io

January 15, 2025

Abstract

zkVot is a client side trustless distributed computation protocol that utilizes zero knowledge
proving technology. It is designed to achieve anonymous and censorship resistant voting while
ensuring scalability. The protocol is created as an example of how modular and distributed
computation can improve both the decentralization and the scalability of the internet.

A complete and working implementation of this paper is available here, and the demo can
be tried in this link. It is important to emphasize that zkVot is one of the first complete
implementations of a fully censorship resistant anonymous voting application that can scale
up to a meaningful number of voters.1

1 Introduction

zkVot brings various distributed layers (e.g. blockchains), zero knowledge proving technology, and
client side computation together to make most of the distributed value on an actual use case. By
implementing this project and writing this article, our main goal is to show that the technology is
ready, and it is just a matter of time and perspective to bring decentralization into the life of the
actual end user.

Even though some solutions presented here may seem specific to a voting application, actually
it is possible to extend concepts across different domains and solve various problems by embracing
the same approach. And with this consideration, maybe it is even more appropriate to describe
zkVot as a protocol more than a product: In an internet that is fully designed on top of censorship
resistant layers and distributed computation, zkVot is one of the first utilizers of a transfer protocol
that we want to create with the hope of a better internet.

2 Background and Motivation

The current internet is mostly built using a transfer protocol named HTTP[17], controlling all the
interactions between different parties of the network. In the most common set up, two parties exist
in a web application: the client and the server. However, modern web applications go much beyond
this basic model to optimize the performance and the security. Instead of creating a single server
with a lot of responsibilities, applications divide tasks among different layers that are optimized
for some specific purpose. For instance, complex applications use at least a few different types of
data storages to improve caching and filtering, or various ASPs (Application Service Providers) to
securely perform different tasks. Moreover, clients of the system can also choose to use additional
layers while interacting with the application, like VPNs to make their interactions partially private.

Here, it is important to emphasize that all the interactions between various layers are always
controlled by a protocol like HTTP. As a matter of fact, the generic and scalable design of these
protocols is the reason behind the success of the internet in today’s world.

However, unfortunately almost all layers in today’s internet are controlled by some central au-
thorities, and this centralized design of the internet harms user privacy, creates a risk of censorship,
and limits scalability.

zkVot is a similar transfer protocol designed for online governance using decentralized networks.
As well as fulfilling the UX requirements of the current internet, elections using the zkVot Protocol

1The current testing estimates that 1 million votes can be counted under 6 hours along with the associated zero
knowledge proof without any significant trust assumption.

1

mailto:yunus@node101.io
mailto:kadircan@node101.io
https://github.com/node101-io/zkvot
https://demo.zkvot.io/

provide full anonymity and censorship resistance, which is practically impossible with the current
internet. Moreover, the distributed approach of zkVot allows elections to scale with every new user
joining the protocol, unleashing a scalability potential that has never been possible before.

3 Problem Definition: An Ideal Voting Application

In an ideal online voting application, it is desired to achieve following properties:

1. Every user’s (a.k.a. voters) identifier (e.g. public key) must be checked to be in a predefined
public set, to allow the verifiability of the election’s integrity by anyone.

2. No one should be able to follow a vote back to the voter during the election.

3. The anonymity of each voter must be preserved even long after the election is complete.

4. No one should be able to censor the counting of a vote based on any criteria.

5. Every vote should be counted only once (i.e., no double voting).

6. No one should have any doubt about the result of the election.

7. The election results must be preserved in a public, verifiable and persistent network.

8. The election must end at a predetermined and public time.

9. The system must be scalable at least up to a meaningful number of voters 2 without com-
promising any of the above properties.

The zkVot Protocol addresses these requirements to achieve both aspects of the decentralization:
being trustless and censorship resistant. Moreover, by adapting the distributed computation over
all participants of the network, zkVot Protocol aims for a scalability and computation power that
was impossible before.

This article is written to go through the layers creating the zkVot Protocol and describe each
step making this technology possible.

4 Layer Specifications

The zkVot Protocol is designed as a communication protocol between different parties that makes
use of zero knowledge proving technology. Currently, there exists 5 different layers of the protocol.

This section aims to explain the protocol in its full detail by going through all layers one by
one, including some unique implementation specifications, the current benchmarking and security
considerations.

4.1 Voting Layer: Privacy of a Single Vote

The first layer of the zkVot Protocol is the Voting Layer, where all votes are created. The Voting
Layer is responsible for providing anonymity while also ensuring scalability.

4.1.1 General Overview

To achieve a fully private design, zkVot uses client side computation: If an information never leaves
the client side (e.g. browser), then there is no risk of losing privacy.[8] Thus, each vote is created
in the form of a ZKProof (zero knowledge proof) in the voter’s personal device.

Currently, ZKProofs are one of the best solutions out there to provide programmable privacy
between two parties (named as prover and verifier): ZKProofs allow the prover to convince verifiers
to the proper execution of some process3 without revealing any additional data.

Making use of these properties, the client side (i.e. each single voter) joins the zkVot Protocol
as a part of the Voting Layer. This distributed approach does not only guarantee privacy, but also
improves the scalability of the system greatly, as the computational complexity of a vote becomes

2Here, a meaningful number of voters may be 106 or 107, as most of the communities in the world may be
described as a reasonable partition of these coefficients (e.g. cities of a country).

3Here, the proper execution is agreed upon between the prover and the verifier beforehand.

2

Figure 1: The general overview of the zkVot Protocol’s layers and the interaction of a voter during
the voting process.

constant over the number of voters: Each voter contributes with their own local computation power
to the Voting Layer by generating their own respective ZKProof.

In the zkVot Protocol, ZK-SNARK proofs[10] are used. ZK-SNARK proofs provide all the
properties of a ZKProof, and they are also always verified in constant time. This means that the
verification time of a ZK-SNARK proof does not depend on the input size or the proof complexity.
This improves the scalability even further.

On top of the privacy and scalability advantages, client side generation also allows customization
of the authentication method used for different voters of the same election. As the proof is generated
on the client side, and the verification of election eligibility4 will be done inside the proof, any
private / public key pair algorithm can be used for voters. Different voters may choose to use
different public key algorithms belonging to different blockchains in the same election, making the
election chain agnostic in terms of voters.5

As explained before, thanks to ZK-SNARK proofs, using different algorithms for authentication
does not change the cost of verification in any way, it may just cause the proof generation time of
different voters to differ. Nevertheless, remember that since the Voting Layer performs distributed
proof generation for voters, this does not affect the scalability of the protocol in any way.

4.1.2 ZKProof Design

The ZKProof generated in the Voting Layer should be designed specifically to achieve all of the
properties above, verifying all necessary statements in the most scalable way. Before coming to
what statements the ZKProof vote will verify to be true (i.e. the proper execution of the process),
let us discuss what output is needed from each ZKProof.

First of all, the ZKProof should output the candidate that the voter has voted for. According
to our problem definition, it does not matter if everyone can see the candidate chosen if the voter
stays anonymous.

Secondly, ZKProofs need a way of providing a unicity check over each vote to prevent dou-
ble voting without losing privacy. Thus, a nullifier is added as the second public output of the

4Being eligible for an election corresponds to the 1st point in the problem definition.
5Here, an interesting improvement in the current design can be using ZK TLS to allow people vote through their

emails.

3

ZKProofs.
Nullifier is an anonymous way of identifying someone. A very basic example of a nullifier is

a hash of a private key. If we know the hash algorithm to be correctly executed (which can be
achieved through ZKProofs), then we are certain that using the same private key will result in
the same nullifier, as hashing is a deterministic process. Moreover, it is impossible to extract the
private key from the hash.

However, the hash of the private key results in pseudo-anonymity across different elections:
As the same private key joins different elections, the nullifier remains the same, and the partial
identity of the voter is revealed. In order to solve this problem, the zkVot Protocol defines a unique
election identifier (refer to here after as the EID) for each election, and generates a non-interactive
nullifier as the hash of the private key and the EID.

More formally, the ZKProofs must get the following inputs and prove the following statements
to be true (which are named as assertions of a proof):

1. The prover must provide a private key as a private input.

2. The verifier must provide the initial set of public keys allowed as the public input.

3. The ZKProof must assert the public key corresponding to the given private key to be inside
the predefined set of public voters.

4. The prover must provide the EID as a public input.

5. The ZKProof must generate a nullifier inside the proof from the given private key and the
EID to prevent double voting while preserving anonymity.

6. The prover must provide a valid candidate along with a signature to indicate their choice as
a public input.

4.1.3 Implementation Details

In the current version of the protocol, o1js[16] is used for the proof generation technology, which is a
PLONK based proof system.[11] For the Voting Layer, there are multiple possible proof generation
frameworks that can be preferred, thus the reasons behind the choice of o1js are detailed in the
respective section below.

In the Voting Layer, one of the most important points to discuss is how to implement the
inclusion check of the voter’s public key to be inside the initial set. A naive approach is to get the
list of public keys as a sorted array, and perform a binary search inside the proof. However, this
solution depends linearly on the number of voters for the public input size and logarithmically for
the proof generation time. A better implementation is using a merkle tree, where we can get the
merkle root as the public input and the merkle witness as the private input of the proof. This does
not change the proof generation time significantly, but it makes the public input size constant in
complexity. In our ZKProof design, it is crucial to decrease the size of public inputs as much as
possible in order to optimize the verification complexity. As we will explain more later6, decreasing
the verification costs increases the censorship resistance of the system significantly.

In order to prevent any issues regarding the merkle tree verification across different provers and
verifiers, we can define the protocol to sort leaves of the merkle tree (a.k.a. hash of voter public
keys) in an ascending order. This is an accurate example of how the communication rules defined
inside zkVot Protocol help the Voting Layer to be distributed across all voters, without needing
any bridge or similar.

Finally, the nullifier design specified above is unfortunately not possible this simply. Specifically,
private key is a very sensitive data, and almost none of the client side wallets export private key
to a browser. Thus, the nullifier cannot be directly created inside the protocol.

In order to solve this problem, the zkVot Protocol offers to use a wallet that supports creating
nullifiers through ZKProofs. By using one of these wallets, voters can easily generate their nullifiers
without revelaing their private key, and input their generated nullifiers to the ZKProof. Then, the
ZKProof verifies the nullifier to be correctly generated7 for the given EID and public key.

This solution is optimal in terms of performance and decentralization. The only problem is the
fact that this set up limits the user to use some specific wallets. Unfortunately, as of today, the

6Please refer to the Settlement Layer section.
7This is a recursive verification of a SNARK proof inside another, which is described more in the Aggregation

Layer section.

4

majority of most common wallets does not implement ZK functionality to generate nullifiers. This
causes zkVot to only support some specific wallets.

A possible solution here (which is not yet implemented in the current design) is to ask users
to set passphrase before joining to the election and then to vote using this passphrase (where the
ZKProof generate the nullifier from this passphrase with the first process described). However,
this forces voters to interact with the protocol in two different times8, and it is also very hard to
design in a scalable way9. In short, we believe it may be wiser to wait more wallets to implement
ZK nullifier support instead of forcing this UX.

4.1.4 Security and Benchmarking

The security of the Voting Layer is maximal, as there is no private data access or authentication
mechanism. The proof set up itself forces the voter to act honestly, and any invalid proof (or
double vote) is rejected by other layers of the system without any enforcement in the Voting Layer
(detailed more below).

As a result, the only significant property of the Voting Layer to benchmark is the proof gen-
eration time. By taking the mean performance of different environments over 1000 votes, we find
that the generation time is sufficient. Specifically, each user is responsible for the generation of
their own vote, so the proof generation time of a vote has very little effect on the scalability of the
system.

Table 1: Vote Proof Time Analysis

Machine Avg Time per Vote (ms)

Apple M2 Silicon 16 GB 8 Core 7796.85
AMD 5600x 16 GB 6 Core 50050.45

4.2 Communication Layer: Gathering of All Votes

After generating private votes on the client side, zkVot needs to define a layer that will be re-
sponsible for the transfer of these votes to verifiers. As described in the 8th point of the problem
definition, there is a pre allowed time interval to submit a vote, and until this time has passed,
ZKProofs should be stored in a layer and communicated to every verifier in the system. This layer
is naturally named as the Communication Layer.

4.2.1 General Overview

While designing the Communication Layer, there are few important considerations:

1. Anyone should be able to communicate their vote without the risk of censorship.

2. Anyone should be able to observe the communication without any time delay.

3. There must be a high availability guarantee for communicated votes for a meaningful time.10

4. The communication should be fast (i.e. the Communication Layer must support a high
number of transactions per second or TPS)

5. The communication costs (i.e. transaction costs) should be as low as possible.

Let us emphasize here that zkVot does not choose the Communication Layer to perform any
kind of computation or verification over the sent ZKProofs. To its consideration, a TX (transaction)
made to the Communication Layer may be a duplicated vote, an invalid ZKProofs, or even just
some random data. Moreover, the Communication Layer does not implement any functionality to
stop the communication after the election is done. This functionality is provided in another layer.
And all these choices allow zkVot to use a DA (data availability) layer as the Communication
Layer.

8There must be a reasonable amount of time between two interactions to preserve anonymity.
9You can read more about parallel aggregation during the arrival of votes in the Aggregation Layer section.

10A meaningful time in the context of an election is usually less than a few days.

5

4.2.2 Usage of DA Blockchains in the Communication Layer

DA layers are very efficient ways of storing data with very high liveness guarantee and with very low
cost, by implementing a structure called light nodes. Light nodes[21] can read from and write to
the blockchain like full nodes, meaning without requiring any intermediary but the gossip network.
Yet, light nodes are not a part of the consensus, allowing them to be started without a complex
synchronization process. They only store a small amount of the data, and thus they are much
“lighter” machines than full nodes. A light node can be started in a personal computer in minutes
without waiting for the synchronization from genesis.

By implementing light node structures, DA layers allow users to send TXs with a minimal risk
of censorship. Even though most DA layers do not usually provide programmability on top, zkVot
uses DA for the other advantages it has:

1. DA layers have very high liveness for short time storage.

2. TXs made to DA layers are cost efficient.

3. The block time and the TPS of a DA layer is sufficient for scalability.

4. Communication of votes becomes censorship resistant, as light nodes make the need of an
RPC or similar intermediary while writing and reading data.

The final point needs a bit more clarification: Individual voters can of course choose to submit
their personal votes through their own light nodes. However, this is not really required, as using an
RPC while sending a vote is not a real risk of censorship. Submitting a block to the DA through
RPC is a single time trust, and in most networks installing a light node also involves a single time
trust. Moreover, the voter may use multiple RPCs; If all RPCs reject a vote, this means that the
entire network is censoring the voter, which is against the majority assumptions of a DA. However,
the same cannot be said for verifiers. Verifiers cannot trust RPCs to communicate all votes without
any significant delay, as this is an ongoing trust during the election. Thus, the light node aspect
of a DA is useful for verifiers, preventing any censor while reaching communicated votes.

On a different notice, it is important to emphasize once more that DA layers are not a good
choice as a persistent storage. They do not have high availability guarantees for historical data, but
this does not really matter for our purposes. Communication Layer is only used for the distribution
of votes, and not the storage of any long term data.

Even though DA layers may seem like the perfect Communication Layer, as said before, they
do not provide programmability over data. As a result, there is a need for an additional layer
responsible for the tally of the election by verifying sent ZKProofs.

Nevertheless, this actually is not a problem that should be fixed about DA layers. In an ideal
architecture, these functionalities must indeed be separate. By not handling the verification of
sent data, DA layers maximize short term liveness, minimize costs of storing and sharing data, and
prevent any censorship while reading blocks.11

4.2.3 Implementation Details

Even though the zkVot Protocol does not implement its own DA layer, but rather just uses an
existing one, it is an important question to answer which DA layer to use. Fortunately, our answer
is really satisfying: It really does not matter.

As we will discover more later, the zkVot protocol depends really little on the choice of the DA
layer. Thus, different elections can choose different DAs as their Communication Layer. Moreover,
an election can even use multiple DAs at the same time for the Communication Layer.

If the Communication Layer consists of multiple DAs, then verifiers need to listen to all DAs
at the same time. However, this is not a problem: It is enough to install a light node to track the
DA, and verifiers can have multiple light nodes in the same machine. By using multiple DAs at
the same time, elections optimize their performance and decentralization:

1. As voters need to submit to only 1 DA to be included in the protocol, the TPS of the
Communication Layer increases significantly with each DA used.

2. Even if one of the DAs becomes unavailable because of overuse or a technical problem, the
communication continues over the rest.

11Note that this paragraph is a summary of the idea behind zkVot Protocol: Each layer improves some properties
by giving up some other, and zkVot brings the best attributes of each to optimize the entire system.

6

3. The UX improves, as voters may choose the DA they prefer instead of adapting themselves
to the DA chosen by the election.

In the current implementation, zkVot uses Celestia[1] and Avail[22], since they meet all the
criteria above and they are frequently used in the blockchain space. In the future, more DAs may
be added to the zkVot Protocol without needing any protocol level update. Specifically, elections
using the zkVot Protocol may customize their choice of DA layer by just releasing a common
terminology between all layers included, very similarly to the usage of various ASPs in different
applications over HTTP.

4.2.4 Security and Benchmarking

As explained before, zkVot does not implement its own DA layer or creates a bridge between the
Communication Layer and other layers. Thus, we can directly adapt the security considerations
of the used DA layers[1][22].

Nevertheless, it is worth mentioning that it is the constant time verification property of ZK-
SNARKs that allows zkVot to design the Communication Layer in this way. If it was costly to
understand if a block is a valid ZKProof or not, then a bad actor may be able to censor the system
by sending too many invalid ZKProofs.

By benchmarking the verification process in various machines, we show that this is indeed not
the case:

Table 2: Vote Verification Time Analysis

Machine Avg Time per Vote (ms)

Apple M2 Silicone 16 GB 8 Core 628.64
AMD 5600x 16 GB 6 Core 3151.90

As a result, the only way to really censor the sending of valid ZKProofs is to use all of the
available network space, equivalent to censoring the entire DA layer, which is prevented by the DA
architecture.12

4.3 Aggregation Layer: Counting Votes as a ZKProof

After having votes communicated to everyone interested, the zkVot Protocol needs to count all
votes without losing privacy or decentralization.

4.3.1 General Overview

Getting the result of the election from ZKProofs is actually quite simple. Anyone can track
published ZKProofs from the DA layer, verify each of them in their local machine (also while
making sure there is none with a repeated nullifier to prevent double voting), and sum up public
outputs of proofs to come up with the result of the election.

This process is totally trustless and scalable, since the verification of a ZKProof is very cheap
even in a personal computer (as shown before). However, DA layers are not ideal as a persistent
storage, so we cannot trust all ZKProofs to be available in the long run for anyone to verify the
result of the election.

Moreover, allowing everyone to see all votes does not solve the problem with the current election
systems. The process described above is actually very similar to the tally process in conventional
elections. Using DA is a slight improvement to the conventional tally, as only 1 observer (i.e.
tallyman) is enough to observe the entire process. However, observers are not accepted by legal
authorities, and the final result is always decided by a single governmental authority. Thus, zkVot
Protocol needs to implement similar functionality online: All results must be combined for once,
while preserving trustlessness, and must be settled in a provable layer for anyone to verify at any
point of time. For this chapter, we will talk only about the counting process and come back to the
settlement process later.

A possible approach to allow decentralized counting may be using on-chain computation to
verify and add up votes. By performing the above process in an on-chain computation environment,

12Sending a block to the DA has a cost, thus a full censor of the network would require too much funds[1][22].

7

zkVot may allow anyone to verify the result of the election by only reading the state of the on-chain
smart contract. However, this approach needs every vote to be submitted as a TX to the on-chain
computation environment. This is not scalable, both in performance and costs, as it depends
linearly to the number of voters. Thus we need to use off-chain computation to scale without
losing decentralization.

Off-chain computation is the process of using off-chain resources to perform some computation,
and updating the state with the final result. When we say off-chain computation, we may refer to
any computation environment but the final blockchain we store the result. However, in the zkVot
case, the off-chain layer is deliberately chosen as a centralized server to maximize the scalability
of the system.

Nevertheless, in order to preserve decentralization, all computations in this off-chain server
must be performed in a trustless and censorship resistant manner. There are various ways of
making an off-chain process trustless, and a technique called ZKProof aggregation is preferred in
the zkVot Protocol.

4.3.2 Trustless Vote Counting through ZKProof Aggregation

ZKProof aggregation[2] is the process of including ZKProofs inside another in the form of a different
ZKProof, also while combining their public outputs. The final aggregated ZKProof verifies all
the ZKProofs included during its computation, and additionally may assert any other custom
statement. Basically, it executes the same process of a trustless counting in the form of a ZKProof,
so that anyone can verify only the final proof to learn the final result. Naturally, zkVot names the
layer responsible for ZKProof aggregation as the Aggregation Layer, and the off-chain server that
is responsible for the proof generation as the aggregator.

Once the aggregation is done, the Aggregation Layer submits the final proof to the next layer
to verify and settle the election result in a decentralized manner. In the zkVot Protocol, this layer
is named as the Settlement Layer.

Along with providing trustless off-chain computation, there are several other advantages of
using ZKProof aggregation in the counting process of the zkVot Protocol

1. It is enough to submit 1 TX to verify and store the final result of an aggregation.

2. Aggregation of ZKProofs is constant in verification time13, meaning the final aggregated
ZKProof is always verified in constant time complexity regardless of the proof count in the
aggregation. Thus, on-chain verification costs are the same regardless of the election size.

3. Aggregation of ZKProofs is fixed in proof size14, meaning after the first aggregation, the
proof size always stays constant. Thus, the final proof size is the same regardless of the
number of voters in the election.

As a result, it is enough to scale the off-chain aggregator to scale the election: Scalability of
the system does not depend on the performance of the Settlement Layer. And since off-chain
computation is much cheaper than a decentralized computation environment, the Aggregation
Layer provides cost efficiency for zkVot.

However, it is not easy to design the aggregation ZKProof. There are a few important problems
to solve to not lose the scalability.

4.3.3 Aggregation ZKProof Design

First of all, during the counting of votes, the aggregation ZKP should include a unicity check to
make sure none of the votes are double counted by the aggregator. Each step of the aggregation
must also output some structure showing which nullifiers are used during previous iterations, so
that the next step of the aggregation may check the exclusion of the new nullifier inside this
structure. We can use another merkle tree to express all used nullifiers in an efficient and verifiable
way, but it is really hard to perform an exclusion check over a merkle tree: We need to compare
all leaves of the merkle tree with the new nullifier to make sure none of them is the same. A much
more optimized and scalable way to perform a unicity check is to use a merkle map.

Merkle map (a.k.a. sparse merkle tree or indexed merkle tree) is a giant merkle tree that has
as many leaves as the prime order of the hash function used. For instance, if the hash algorithm

13As stated before, ZK-SNARKs are verified always in constant time, and the property is preserved during
aggregation.

14Note that this property is true for the proof system used, but not necessarily for all proving technologies.

8

that is used has the prime order P (i.e. outputs of the hash are all in the range [0, P −1]), then the
merkle map also stores P leaves. Initially, every leaf of the merkle map is set to 0, representing that
nothing is included in the tree. Every new insertion to the merkle map turns the corresponding
leaf from 0 to 1, instead of adding a new leaf as in the case of the merkle tree. A leaf being 1
corresponds to having the hash in the merkle map, while 0 indicates the absence of this hash.

The merkle map’s architecture may sound very unoptimized, as the hash domain is usually
huge and we need a very big merkle map to store all possible outputs of a hash15. However, as the
verification of a point in the tree is logarithmic in complexity, merkle maps are efficient enough to
be used inside ZKPs. And as merkle maps can also generate a proof showing the absence of an
hash value in the tree, they allow efficient exclusion checks.

To summarize, the aggregation ZKProof gets the following inputs and assert the following
statements to be true:

1. The proof gets the previous aggregated proof. For the base case, this proof is empty.

2. The proof gets the vote proof to be counted in this step (this vote proof has the specifications
described in the Voting Layer chapter)

3. The proof verifies the vote proof to be correctly generated.

4. The proof gets the merkle map witness of the vote proof’s nullifier.

5. The proof asserts that the merkle map witness of the vote proof’s nullifier points to an empty
leaf (value of 0) in the merkle map root of the previous aggregated proof.

6. The proof computes the new merkle map root from the merkle map witness with a filled leaf
(value of 1).

7. The proof takes the previous number of votes over candidates from the previous aggregated
proof and adds 1 vote to the candidate given in vote proof’s public output.

8. The proof takes the previous amount of aggregated votes from the previous aggregated proof
and adds 1 to compute the new aggregated vote count.

9. The proof outputs:

(a) The new candidate list representing number of votes over each candidate.

(b) The new merkle map root including the new nullifier.

(c) The new aggregated vote count.

With this above design, it is impossible for the aggregator to lie about the result of a counting
process. However, off-chain aggregation does not guarantee censorship resistance. Notably, the
aggregator may choose not to include a ZKP from the Communication Layer in the final result
without breaking the integrity of the aggregated ZKProof. In short, trustlessness does not equal
decentralization, and the Aggregation Layer needs a way to provide censorship resistance.

4.3.4 Censorship Resistant Aggregation

There is a straightforward approach to the censorship problem, which is to connect the Com-
munication Layer and the Settlement Layer16. By doing so, the Settlement Layer may verify the
aggregated ZKProof to include as many valid ZKProofs as on the DA layer. However, this approach
is problematic in various ways.

The first possible usage of a connection between the Settlement and the Communication Layer
is the comparison of available votes versus the aggregated result. By asserting the two numbers to
be the same, the Settlement Layer may prevent the Aggregation Layer from censoring any vote.
However, deducing the number of available votes in the Communication Layer does not make sense.
If the Settlement Layer verifies all blocks in the Communication Layer to deduce the number of
currently available votes, then it may as well count the votes to finalize the election, which is
equivalent to the on-chain computation approach described above.

Another way is to force the Aggregation Layer to send proofs not only for valid ZKProofs,
but also for invalid blocks proving that they cannot be included in the final result. Then, the
Settlement Layer may assert the number of all proofs in the aggregation to be the same as all blocks

15For SHA256 hashing, for instance, the merkle map needs to have approximately 2256 ≈ 1077 leaves.
16For instance, through signature verification of the Communication Layer consensus in the Settlement Layer.

9

in the Communication Layer. But unfortunately, this is not really feasible in practice. Proving
something to not be a valid ZKProof is very difficult to optimize and implement. Moreover, this
setup forces aggregation nodes to aggregate much more information then before, creating a possible
attack vector on the system as the Communication Layer is permissionless. Note here that the
permissionless aspect of the Communication Layer was not a problem before, as the verification
time of a ZKProof was constant. However, this is not the case for proving something is not a valid
vote, thus invalid blocks put a huge burden over the Aggregation Layer.

As a result of these limitations, in order to solve the censorship issue issue, zkVot Protocol
defines a solution that does not connect the Communication and Settlement Layer: Instead of
making the aggregator permissioned, zkVot Protocol allows anyone to join the Aggregation Layer
as an aggregator. Remember that we previously defined the aggregator as a single centralized
server that was permissioned by the Settlement Layer. Now we update this set up to allow anyone
to aggregate ZKProofs and settle results: Communication Layer is already permissionless, and
anyone may join the DA by installing a light node to track all votes. This means that anyone can
actually run some zkVot aggregation software17 to reach the election result trustlessly.

A permissionless Aggregation Layer prevents censorship since it needs only 1 honest aggregator
to submit a settlement TX. If only 1 aggregator is acting honest and settling all TXs, then
the real results get reflected on the chain. Needing only 1 honest aggregator is a very light trust
assumption, especially considering most consensus algorithms need at least the 51% of the system
to be honest.

In order to incentivize the honest aggregator, we need an incentivization mechanism in the
protocol. In zkVot, the incentivization is defined in the Settlement Layer. The first honest aggre-
gator receives the rewards available in the Settlement Layer at the end of the election. This setup
is secure and scales with the number of voters in the election: A bigger election means a bigger
incentive to be censorship resistant, and thus the election provider has more funds to put on the
Settlement Layer to motivate the honest aggregator.

However, there is a problem with making the Aggregation Layer permissionless: The verification
process needs a way to understand which aggregator is honest and which ones are censoring some
votes. zkVot solves this problem by putting a condition over the settlement, named as the Accepting
the Maximum Condition.

4.3.5 Accepting the Maximum Condition

Accepting the Maximum Condition (referred to as the AMC hereafter) stores the last maximum
number of settled votes in the Settlement Layer. When an aggregator sends a settlement TX, it
is accepted only if it is bigger than the last stored number in the stored state. As a result, if
there is only 1 honest aggregator in the Aggregation Layer, all voters are always included in the
final result. All dishonest aggregators trying to censor some votes are blocked by the AMC in the
verification contract.

Moreover, even in a set up where none of the aggregators is honest, but they are in a perfect
competition to get the incentive on the Settlement Layer, the AMC may ensure that censorship
resistance is achieved: Instead of rewarding all aggregators that was able to settle (i.e. all aggre-
gators who submit an aggregation proof with a count of votes greater than the previous recorded
maximum), the settlement contract waits until the election is finished to reward the honest aggre-
gator. Thus, the first aggregator who reaches the maximum aggregation count (i.e. the real result
of the election) is rewarded at the end of the settlement period. This causes dishonest aggregators
to compete to reach the maximum result quickest.

To describe more formally, we may consider the settlement TXs as a sequence of integers, where
each integer represents number of votes included in an aggregation proof. Then, we see that AMC
forces this sequence to be strictly increasing. As the sequence is naturally bounded by the number
of voters in the system18, the model becomes a strictly increasing bounded sequence, so it is forced
to converge.

Nevertheless, in order to increase the liveness of the AMC to its fullest, we need to decrease
the aggregation complexity as much as possible. A more optimized aggregation process makes
the job of the honest aggregator much easier, and thus the incentive becomes much higher. It
may be preferable to use a proof system optimized to perform very efficient aggregation, but this
does not change the aggregation complexity in terms of number of voters. Formally, designing the

17Aggregators can also choose to implement their own aggregation logic as long as it produces a valid ZKProof
with the same verification key in the Settlement Layer.

18A valid aggregation ZKProof may include maximum N proofs in an election with N voters.

10

aggregation as a single threaded process where each aggregator may count a single vote at a time
limits the scalability.

A single threaded linear approach does not scale in the long run because of hardware limitations.
A bigger incentive coming with a bigger election may motivate the honest aggregator to support
running better hardware. Yet, hardware may scale up to a point, and even a very performant
hardware would not be enough for aggregation of millions of votes in a reasonable time. In order
to improve this limitation, the Aggregation Layer must allow multi-threading through parallel
aggregation with ZK-SNARKs.

4.3.6 The Parallel Aggregation Tree

Parallel aggregation is the process of aggregating different ZKPs without waiting for others, and
then combining all these proofs together again in the form of a binary tree, referred to here as the
aggregation tree. This allows the honest aggregator to work on the aggregation of multiple proofs
at the same time or in different machines. This improves the complexity of the aggregation from
linear to logarithmic dependence.

Unfortunately, merkle maps cannot be used efficiently with parallel aggregation, as each update
to the merkle maps affects the root, and it is impossible to compare different roots to understand if
they include the same updates or not. In order to solve this limitation, the zkVot protocol performs
parallel aggregation through a segment tree like approach.

In this approach, proofs in the aggregation tree do not output a merkle map root. Instead,
they output the smallest interval that the nullifiers they have used are contained in, named as the
smallest unicity interval. To clarify, as stated before, nullifiers are a basic hash, and thus limited
to be contained in a finite domain: Each nullifier is an integer in the range [0, P − 1], where P is
the prime order of the hash function used. Thus, for every subset of nullifiers of an election, we
can define the smallest unicity interval. Specifically:

I = [min
∀j∈J

nj ,max
∀j∈J

nj]

where I is the smallest unicity interval of a proof and nj , j ∈ J is the set of nullifiers that
creates the interval. For the leaves, we define the smallest unicity interval as the nullifier itself:

I = [nj , nj],∀j ∈ J

Then, while computing the parent of two proofs in the aggregation tree, in order to make sure
none of the nullifiers are duplicated between two children, we simply assert:

max
∀i∈I1

i < min
∀i∈I2

i

where I1 and I2 are the smallest unicity intervals of the left and right child, respectively.
Finally, we compute the smallest unicity interval of the parent, I, as follows:

I = [min
∀i∈I1

ni,max
∀i∈I2

ni]

As each time children are checked for exclusion, there is no risk of double voting with this
setup. Moreover, this system is much more optimized than a merkle map implementation.

The only problem with this structure is the fact that, in this model we need to sort all nullifiers
before starting aggregation. This is not a problem if all votes are already put on the Communication
Layer before the counting process. However, this is usually not the case, and in order to allow
aggregation during the arrival of votes, we should be able to add any nullifier to this tree in
logarithmic time complexity. This can be achieved by storing all intermediary proofs in the cache
of the aggregator and using them to add a new leaf to the tree. In the worst-case scenario, this
compromises the balance of the binary tree. When multiple updates target the same range, the
property of constant updates within that range is disrupted.

To solve this issue, the zkVot Protocol defines a new tree structure for parallel SNARK
aggregation with unicity check.

While designing this tree, we first define K, number of parallel threads we want to run for the
aggregation process. We can easily see that K is well defined for all elections as the number of
voters in an election is known at start. Then, we divide the total range of nullifiers, [0, P − 1], into
K equal intervals, so that the kth interval is defined by:

Ik = [(k − 1)
P

K
, k

P

K
− 1],∀k ∈ J1,KK

11

Here, we define two different types of aggregation proofs, one representing each Ik (named
as the interval proof) and one responsible for the aggregation of these intervals (named as the
aggregation proof). For now, we assume that the interval proofs assert all nullifiers to be in the
interval it represents and also allow logarithmic additions of nullifiers to the interval. With this
assumption, the aggregation proof is created with the same process as before, but since the interval
proofs are always updated in the same time, the risk of becoming a chain becomes avoided.

Lastly, in order to allow the interval proofs to have logarithmic inclusion of a new nullifier,
we use the same merkle map structure as before. Here, we observe that each interval proof is
already assigned to a thread (since we defined K to be number of threads). Thus, the responsible
thread of an interval does not need to perform parallel aggregation for the interval proof generation
anymore, so the interval proof can be created in the single threaded way of a merkle map. Being
single threaded, using merkle map does not create any risk of increasing the update complexity.

As a result, the time complexity T (U) of an update U becomes:

T (U) = T (Ik) + T (A)

where T (Ik) is the time complexity of the update of an interval proof and T (A) is the time
complexity of the new aggregation proof. As already explained, T (A) = O(log(K)), since there
are K intervals and we store all intermediary proofs.

Finally, as the merkle maps included in each interval proof has a range of P/K, T (U) =
O(log(PK)). As a result:

T (U) = T (Ik) + T (A) = O(log(
P

K
)) +O(log(K)) = O(log(P))

which is equivalent to the time complexity of using a merkle map proof in a single threaded
aggregation.

Notably, the time complexity of a single update does not depend on the choice of K. Neverthe-
less, the choice of K affects the total proof generation time as we can work on K proofs at the same
time in total (here the aggregation proof generation can be optimized even more for simultaneous
updates of different interval proofs). Specifically, assuming the aggregation of an interval proof
takes S seconds, the total time needed for the aggregation to be completed becomes O(SN

K) for N
voters.

On the other hand, a bigger K means that we need to have more threads, which increases
costs of aggregation. In this article, an ideal choice of K is not discussed, but a trivial nearly
optimal choice of K is K =

√
N for N voters. With this consideration, the total time complexity

of aggregation equals O(S
√
N).

Finally, it is important to observe that if all nullifiers are in the same interval Ik, then this
method becomes equivalent to a single threaded aggregation. However, nullifiers are deterministic
and resistant to a preimage attack, so a possible attacker cannot attack the system by altering
some nullifiers to always be in the same range. Thus, it is a safe assumption that randomly created
nullifiers are always equally spread among K parallel threads.

4.3.7 Implementation Details

The most important detail to clarify about the Aggregation Layer is which proof generation frame-
work to use. The zkVot Protocol choses to use o1js, a ZKP generation technology with various
advantages:

1. o1js is a ZK-SNARK generation framework, and it provides full privacy through zero knowl-
edge property.

2. o1js is an NPM library in TypeScript that can natively be run in Wasm and similar NPM
libraries. This increases adaptability of the protocol to various JavaScript frontend frame-
works: As all clients are a part of the Voting Layer, being able to run o1js in different frontend
frameworks is important.

3. As it is in Typescript, o1js is designed to improve the proof generation performance in limited
environments like browser. Again, this improves the Voting Layer performance significantly.

4. o1js includes a lot of pre-built features and libraries, decreasing the implementation time and
costs of creating the protocol. For instance, the Merkle Tree and Merkle Map implementations
are already available in o1js.

12

5. And finally, o1js includes a layer called Pickles to improve ZK-SNARK aggregation by re-
cursion. As described above, the aggregation performance is important to maximize the
censorship resistance of the AMC.

Nevertheless, o1js is not the only proof generation framework with this capabilities, and the
most important reason to choose o1js is given in the Settlement Layer chapter.

4.3.8 Security and Benchmarking

Similar to the Voting Layer, the permissionless aspect of the Aggregation Layer allows it to be in
the maximal security possible: These is no authentication or similar to become an aggregator. If
a dishonest aggregators tries to alter the proof aggregation process, then the result proof is simply
rejected by the Settlement Layer, which is secured by the security considerations of the Settlement
Layer.

In terms of scalability, the free choice of K allows the system to scale with the number of voters.
As there are more voters, there is a bigger incentive to run more threads (or collaborators) to reach
to maximum voter count the earliest possible. As a result, the only factor affecting the scalability
of the system is the aggregation time of two interval proofs. Below, you may find the average time
of the aggregation of 1000 interval proofs:

Table 3: Interval Proof Aggregation Time Analysis

Machine Avg Time (ms)

Apple M2 Silicone 16 GB 8 Core 18444.15
AMD 5600x 16 GB 6 Core 98894.93

For accepting the average time of an interval proof generation around 18s, in an election of 1
million voters, by having

√
106 = 1000 threads, we can count 1 million votes in around 18000s = 5

hours. Please note that 18s is a very unoptimal estimate, and it is used mainly to give a lower
bound to the scalability of the system.

4.4 Settlement Layer: Optimizing Verifiability and Performance

After the aggregation is complete, zkVot Protocol needs to settle the aggregated ZKP and respective
results into a verifiable layer, named The Settlement Layer.

4.4.1 General Overview

Maybe after defining all other layers as above, it may seem like there is not too much that is
needed from the Settlement Layer. However, this is not the case, and the zkVot protocol requires
the Settlement Layer to have the following properties:

1. fast and cheap on-chain verification,

2. efficient and private off-chain computation,

3. verifiable, censorship resistant, and cheap on-chain data storage.

This 3 points may seem like a lot to ask from a single layer, but they can actually be provided all
together as zkVot does not require some very basic properties of a blockchain from the Settlement
Layer, which are:

1. custom on-chain computation,

2. low block time and high TPS performance,

3. unlimited on-chain storage.

The first point, not having any custom on-chain computation, is really important for scalability.
zkVot adapts the philosophy of Bitcoin[18], which is to position a blockchain as a global verification
machine rather than a complete execution environment. This ultimately allows the system to scale
in proportion to the number of voters, as each voter joins the system with their computation power.

The second point is more an observation than an optimization. After creating the Aggregation
Layer to aggregate all results to one final TX, the need for a fast consensus disappears. zkVot can

13

of course work with much lower block times, but there is no real connection between the TPS and
the decentralization or performance of the protocol.

Finally, being able to work with a very limited on-chain storage allows the zkVot protocol to
ensure required properties in the Settlement Layer. It is basically a trade off: It is of course much
preferable to store everything in the Settlement Layer, as this is much easier to implement. Yet,
on-chain storage usually comes with a cost, and this consideration frees zkVot design from the
limitations of having unlimited storage capacity.

4.4.2 Implementation Details

After making these observations, there is one L119 that particularly comes forward for our needs:
Mina Protocol. Mina Protocol[4] is a ZKProof verification layer with some very unique properties.
In zkVot, the following points highlight the most from Mina’s architecture:

1. Aggregated Block History for Constant Time and Size Verification

Mina is basically a huge aggregated ZKProof. The entire block history is represented as
a constant sized aggregated ZKProof: The entire Mina state history is 22 KB in size. This
allows anyone to verify Mina state in constant time and memory. In an ideal voting protocol,
we want the final results to be verifiable by anyone with minimal trust, and this set up allows
us to achieve this.

2. Low Network Fees

All TXs are described as a ZKProof, and Mina validators are only responsible for the ver-
ification of these proofs. And since the verification time of a ZK-SNARK is independent
from the proof size, TX fees in Mina do not depend on the computational complexity. This
ensures deterministic and low network fees20. As a result, the settlement costs of the zkVot
protocol stays constant over the number of voters.

3. Full Node Accessibility

Thanks to the constant sized block history and the usage of on-chain verification with con-
stant time complexity, Mina requires very low hardware to join the gossip network as a full
node. Mina does not implement light nodes yet, but browser compatibility21 makes Mina
full nodes to be almost as accessible as light nodes. Using a light node for settling is not
important22, but this increases long term censorship resistance of reading the election results.

By combining all these properties, Mina becomes a very strong choice as a Settlement Layer
for the zkVot Protocol. However, providing these properties without losing decentralization comes
with some cost.

First of all, Mina only support its own native proof generation framework, o1js (previously
Snarky), to be able to verify proofs on the blockchain. This enforces the Aggregation Layer to
use the o1js as the proof generation framework. Even though o1js is a performant technology, this
situation causes the flexibility around the protocol design to disappear for the proof generation
framework.

Moreover, Mina has very low TPS and high block time. Mina’s current block time is ∼3
minutes, which is higher than ecosystem standards. Moreover, Mina’s consensus is probabilistic
and allows forks like Bitcoin, so there is a hard finality duration for blocks (∼2 hours). Nevertheless,
as explained before, the zkVot protocol does not actually require fast finality, as there is a single
TX accepted for every election at the end23.

Finally, Mina has the most limited on-chain storage available, probably after Bitcoin. A single
Mina smart contract can store up to 8 Field elements (32 bytes). Thus, the zkVot protocol requires
some clever approaches to the on-chain storage usage in order to use Mina as the Settlement Layer.

19L1 (a.k.a. layer 1) refers to a base blockchain like Bitcoin or Ethereum, that can particularly work without
depending on any other blockchain.

20The average TX fee in Mina is currently about 0.02 MINA.
21There is a browser full node implementation for Mina.
22This is an equivalent trust observation that is made in the Communication Layer about using RPCs while

submitting votes.
23Please note that this situation is unique to applications like voting, and cannot be said in general. Yet, Mina’s

block time is expected to improve drastically in the near future.

14

4.4.3 Minimizing the Amount of Data Stored in the Settlement Layer

Before starting this section, it is important to mention that even though we are going to talk about
our implementation specific to the Mina Protocol, approaches that zkVot adopts here may actually
be beneficial to other blockchains as well, as the storage is usually costly in settlement layers.

Luckily, all along the article we have actually being prepared to this point, and most of the
problems are already solved with the considerations zkVot makes on all other layers:

1. The Voting Layer uses a merkle tree to verify the inclusion of voters inside the initial set,
which is constant in size as a public input. It is enough to store the merkle root on-chain to
perform the inclusion verification.

2. The Communication Layer frees the settlement layer from knowing anything about individual
votes.

3. The AMC during the settlement requires storing only one state to store the number of votes
in the last accepted TX, and no other information is needed from the Aggregation Layer.

As a result, only the following information should be stored about every election in an available
way:

1. The voter’s merkle tree root,

2. The Communication Layer identifier, to notify aggregators where to track in the DA,

3. Election question and details.

4. Election’s start & end data,

5. The valid choices of the election and what each choice represents as a candidate,

6. The list of voters in the election, to allow anyone to generate the merkle tree,

7. The election’s result,

8. The last AMC number (i.e. number of votes in the last accepted settlement TX).

Clearly, all this information is independent for each election. Thus, it makes more sense to
design each election to be a separate smart contract in Mina. Instead of putting every election in
the same smart contract, zkVot Protocol deploys a separate smart contract for each election. This
increases memory limitations significantly.

Nevertheless, it is impossible to store all of this information in any way in Mina. A single
Mina smart contract can store about 32 bytes of data, thus we should only keep what is absolutely
necessary in the Mina smart contract:

1. The EID,

2. The voter’s merkle tree root,

3. Election’s start & end data,

4. The last AMC number,

5. Election result.24

All of this information is crucial to have directly on Mina: The verification of the settlement
TX requires the EID, the merkle root, election start & end date, and the last AMC number as
a public input. However, there is a clever design to perform trustless verification without storing
not all of these in the state: We can have the EID, the merkle tree root and election start & end
date as a constant in the aggregated ZKP. When there is a constant in a proof, it changes the
verification key, and thus causes the verification to fail on Mina.

Nevertheless, there is a lot of additional data we need to store about the election as stated
above, like the election question and details. Thus, we introduce the next layer of zkVot: The
Storage Layer.

24As we will explain more in detail in the Storage Layer section, the data that we are looking to export from
Mina should be static to minimize trust assumptions and maximize the scalability. Thus, we choose to store election
results on Mina as well.

15

4.4.4 Security and Benchmarking

As we have already discussed the security of the settlement process in the Aggregation Layer’s
security section, the only thing remaining here is to evaluate Mina’s economical security as a
settlement layer. Mainly, our security and availability guarantees over the settlement layer are
much higher, since we expect the election to be verifiable for all times.

In fact, Mina does not provide an economical security[9] in the same level with Ethereum or
Bitcoin. Nevertheless, it is important to observe here that the lower economical security of the Mina
blockchain does not create any problem for the zkVot Protocol, as each vote in Mina is essentially
an aggregated ZKProof along with some identifier information (which may all be designed as a
part of the proof). Specifically, by providing the settlement aggregation proof and the associated
election information, anyone can prove the election result at any time. If chosen, this information
can be written to a permanent storage blockchain to maximize the availability in the future.

As a result, we believe that the Settlement Layer’s economical security does not put any limi-
tation over the zkVot Protocol. If the election result is considered too important to not be trusted
by the chosen settlement blockchain, then all parties involved in the election process have the mean
to store the election result as a proof for any future verification.

In terms of the benchmarking of the settlement process, as there is a need for only 1 settle-
ment TX per election, the settlement layer’s TPS or scalability becomes again irrelevant to the
zkVot Protocol.

4.5 Storage Layer: Verifiable Elections for All Times

Storage Layer is the final layer of the zkVot Protocol, which is responsible for the storage of all
the election related data. Before passing to our considerations for the Storage Layer, let us discuss
how we can connect it to the Settlement Layer.25

4.5.1 Connecting the Storage and the Settlement Layer

To start, there is one important observation to make: All of the data in the Storage Layer is static,
i.e. it does not change after the start of the election. This is deliberately chosen to be like this, as
it allows us to connect Settlement and Storage Layers without a bridge.

Instead of creating a bridge between two layers, the zkVot Protocol only stores the identifying
information of the Storage Layer in the settlement contract. For instance, if the information can be
reached with an ID, then this ID is stored in the Mina smart contract. Note that we do not store
the hash or some verification data, but we directly store the encoded ID on the smart contract.
The Storage Layer has no information related to the Settlement Layer or the rest of the election.

This is possible because of the static nature of the data: If the election data is not properly
uploaded to the Storage Layer, or an untrue ID is put on the Settlement Layer, then it is impossible
for anyone to join the election. This is the important property that the system must hold: It is
always possible to create a meaningless election, but no one should be able to censor or change a
proper election once it is created.

Then, why do we need to store the Storage Layer identifier in the Settlement Layer? It may
seem like a reasonable assumption that the election provider will be providing the identifier to all
voters to allow them vote in the election. However, this actually creates a trust assumption.

The real power of the zkVot comes from the fact that anyone can verify the entire process by
only looking at the Settlement Layer. Mina is actually very like a DA; even though it has very
limited data storage capacity, it actually provides all DA guarantees on the limited amount that it
stores. Moreover, it actually verifies the entire blockchain history in each step by using ZKProof
aggregation. Thus, storing the Storage Layer identifier on Mina actually makes sure that anyone
who knows about the election will be able to verify the result and participate if they are an eligible
voter.

This of course requires the Storage Layer to be static and censorship resistant as well, meaning:

1. Anyone should be able to upload data in the Storage Layer.

2. Anyone should be able to read data from the Storage Layer.

3. It should be impossible to change or delete data from the Storage Layer.

25The reason that we present this section in this way is the fact that this part is the most important idea that
zkVot adapts for the Storage Layer: The light connection of this layer to the rest of the protocol is one of the core
components of zkVot’s scalability

16

The final point is especially crucial, as it is the criteria that makes sure that the election stays
verifiable in the future. To put it in simpler terms, if someone creates a valid election by uploading
all the required data to the Storage Layer, then anyone will always be able to verify and join in
the election by only knowing the Mina smart contract address.

Moreover, in order to make sure that there was no error during the election creation, zkVot
Protocol also stores a hash of the entire election data in the Mina smart contract state. This makes
the verification of valid elections very simple. In order to verify an election, it is enough to:

1. Go to the Mina smart contract with the given smart contract address.

2. Read the storage ID from the Mina state.

3. Go to the Storage Layer and retrieve the data with the specific ID.

4. Check its hash against the hash stored in the Mina smart contract.

As a result the entire verification of the election becomes possible only through a single layer,
Mina.

Here, it is important to emphasize that an election does not become valid just because it follows
the zkVot Protocol definition. The election creator can ask questions in a biased way, or select the
initial list of eligible voters dishonestly. This is not something that the protocol can be secured
against, but it is prohibited by the social consensus.

Social consensus is the underlying consensus of most blockchains, giving them long term de-
centralization guarantee. It can simply be described as the transparency of the system. Any
technology makes the assumption that if a process is fully transparent, then the community (i.e.
social consensus) will realize any potential fraud and act against it.[7]

In conventional blockchains, social consensus usually secures the chain through a hard fork. For
instance, the Ethereum chain has been forked several times in order to prevent some major attacks
or to have core level updates. In the zkVot’s case, a hard fork is just someone else going there
and creating a valid election: As the election creator has no privilege on the election26, anyone can
create a valid election as long as the majority of the community accepts it.

One final important advantage of designing the Storage Layer independent from the Settlement
Layer is the flexibility that it provides around choosing different blockchains as the storage. Unlike
the Communication Layer, there is no point of having multiple blockchains in the Storage Layer,
but it is a nice UX improvement to allow the election creator to choose the Storage Layer based
on the community habits.

4.5.2 Implementation Details and Security Considerations

After creating this virtual connection between the Storage Layer and the rest of the protocol, there
is not much left to say. As stated above, there is no limitation on the choice of blockchain for the
Storage Layer. As a result, the security of the data stored, the scalability of the data write process
and the cost of data storage depend on the blockchain chosen.

Currently, zkVot Protocol provides the Arweave and Filecoin blockchains as Storage Layer
options, mainly because of their advantages over the storage of long term data with low costs
and high availability guarantees. However, it is possible to use any other blockchain without even
changing any line of code.

4.6 Some Additional Notes on Full Anonymity

Finally, we have defined the entire election process while respecting all the points we have described
in the problem definition. However, there is one final point that we have skipped while describing
the protocol, which is the fact that anonymity may be breached during the sending of votes to the
Communication Layer. Even though the identifier of the voter is kept anonymous by using ZK, the
wallet signing the TX and paying the DA costs is revealed during the submission of the ZKProof.
Thus, we need to anonymize TXs coming to the DA to provide full anonymity during the election
process.

To simplify the problem, we can anonymize fund transfer happening to a custom DA wallet
instead of anonymizing the TX sending. Sending anonymous TXs to the DA is equivalent to
creating a single time usage wallet and transferring some anonymous funds there to pay the TX
costs. Moreover, it is much simpler to anonymize funds than to anonymize custom data.

26As the Aggregation Layer is permissionless, it does not matter who has created the election as long as it is
accepted by the community.

17

There are already a few working implementations of TX anonymization networks over blockchains,
and by using bridges the transfer can easily be reflected on the DA layer. For now, the zkVot Pro-
tocol does not implement TX anonymity over decentralized networks for the client side application,
and users should go and handle the fee anonymization outside of the network to maximize decen-
tralization.

Nevertheless, zkVot has a working centralized server that accepts votes through a public API
port and pays for the funds on behalf of users. This may seem like causing a huge censorship
problem, but in real elections it is reasonable to assume that each candidate joining the election
can easily provide this service to their voters. As this layer is only responsible for anonymizing the
DA TXs, voters can choose to use the service of the candidate they support to not face censorship.

Here, it is important to notice that the Internet itself can provide a lot of anonymity over
transfer of data. Even though VPNs are not perfect sources of anonymity, IP addresses reveal
only some partial information that can easily be hidden. The real problem of an online anonymous
election with the current internet is the computation, i.e. counting of votes. By transferring this
issue to the Communication and Aggregation Layer, zkVot can use the private communication that
the internet ecosystem provides.

A more interesting idea can be using FHE (fully homomorphic encryption) to not reveal can-
didates from votes.[12] Specifically, every ZKP would be outputting the encrypted candidate, and
the counting would be done over the encrypted results using the homomorphic property. Then,
the result will be revealed only when the election is complete and a chosen majority of the voters
agreed to reveal the final result.

However, some information may be revealed with an FHE solution, especially when the number
of voters is very low. Moreover, this is actually a different kind of election, where the result is
hidden until the election is complete. zkVot Protocol adapts a public election model where votes
are counted instantly as they arrive to the system. Thus, it is more appropriate to consider FHE
as a possible (and very useful) improvement over zkVot than an anonymity solution.

5 Conclusion

Finally, we conclude. In this detailed article, we have tried to give a somewhat accurate idea of
how a distributed and anonymous internet would look like over an example use case, voting, which
we consider very relevant to a lot of real life use cases.

We realize that this article is long. This is partially because it describes one of the first dis-
tributed and private computation protocols in the world with a real life use case and implementation
details; partially because we have deliberately chosen it to be so. Sometimes some solutions seem
trivial to writers and researchers, but it may be hard for others to deduce them from a few lines of
explanation. And it is easy to skip a part if you find it useless, but hard to rewrite if you want to
have it. Thus, we chose to explain everything to its final detail: to raise all the questions we had
while designing the system, and to answer them all. We thank you to all readers for their time.

The internet was a breakthrough. It changed the way people perceive the world around them.
Yet, there is still a long way to go, and zkVot is just the first step that we take into the world of
limitless computation and full privacy.

References

[1] Mustafa Al-Bassam. “Lazyledger: A distributed data availability ledger with client-side smart
contracts”. In: arXiv preprint arXiv:1905.09274 (2019).

[2] Nir Bitansky et al. “Recursive composition and bootstrapping for SNARKS and proof-
carrying data”. In: Proceedings of the forty-fifth annual ACM symposium on Theory of com-
puting. 2013, pp. 111–120.

[3] Joseph Bonneau et al. “Coda: Decentralized cryptocurrency at scale”. In: Cryptology ePrint
Archive (2020).

[4] Joseph Bonneau et al. “Mina: Decentralized cryptocurrency at scale”. In: New York Univ.
O (1) Labs, New York, NY, USA, Whitepaper (2020), pp. 1–47.

[5] Sean Bowe, Ariel Gabizon, and Ian Miers. “Scalable multi-party computation for zk-SNARK
parameters in the random beacon model”. In: Cryptology ePrint Archive (2017).

[6] Vitalik Buterin. Ethereum Whitepaper. Accessed: 2025-01-14. 2014. url: https://ethereum.
org/en/whitepaper/.

18

https://ethereum.org/en/whitepaper/
https://ethereum.org/en/whitepaper/

[7] Vitalik Buterin. Hard Fork Completed. Accessed: 2025-01-14. July 2016. url: https://blog.
ethereum.org/2016/07/20/hard-fork-completed.

[8] Vitalik Buterin. “Some ways to use ZK-SNARKs for privacy”. In: Vitalik’s Blog (June 2022).
url: https://vitalik.eth.limo/general/2022/06/15/using_snarks.html.

[9] Brad Cohn, Evan Shapiro, and Emre Tekişalp. Mina: Economics and Monetary Policy. 2020.

[10] Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. “Non-interactive zero-knowledge
proof systems”. In: Advances in Cryptology—CRYPTO’87: Proceedings 7. Springer. 1988,
pp. 52–72.

[11] Ariel Gabizon, Zachary J Williamson, and Oana Ciobotaru. “Plonk: Permutations over
lagrange-bases for oecumenical noninteractive arguments of knowledge”. In: Cryptology ePrint
Archive (2019).

[12] Craig Gentry. “Fully homomorphic encryption using ideal lattices”. In: Proceedings of the
forty-first annual ACM symposium on Theory of computing. 2009, pp. 169–178.

[13] Jens Groth. “Short pairing-based non-interactive zero-knowledge arguments”. In: Advances in
Cryptology-ASIACRYPT 2010: 16th International Conference on the Theory and Application
of Cryptology and Information Security, Singapore, December 5-9, 2010. Proceedings 16. 2010.

[14] Aayush Gupta and Kobi Gurkan. “PLUME: An ECDSA Nullifier Scheme for Unique Pseudonymity
within Zero Knowledge Proofs”. In: Cryptology ePrint Archive (2022).

[15] Florian Kluge. The Many Saints of Privacy: Nullifiers in O1JS. Accessed: 2025-01-13. Jan.
2025. url: https://www.o1labs.org/blog/the-many-saints-of-privacy-nullifiers-
in-o1js.

[16] O(1) Labs. o1js. 2022. url: https://github.com/o1-labs/o1js.

[17] Ed Akamai Mike Bishop. “HTTP/3”. In: RFC 9114 (2022), pp. 1–64. url: https : / /

datatracker.ietf.org/doc/html/rfc9114.

[18] Satoshi Nakamoto. “Bitcoin: A peer-to-peer electronic cash system”. In: Satoshi Nakamoto
(2008).

[19] Alexey Pertsev, Roman Semenov, and Roman Storm. “Tornado cash privacy solution version
1.4”. In: Tornado cash privacy solution version 1 (2019), p. 7.

[20] Eli Ben Sasson et al. “Zerocash: Decentralized anonymous payments from bitcoin”. In: 2014
IEEE symposium on security and privacy. IEEE. 2014, pp. 459–474.

[21] Ertem Nusret Tas et al. “Light clients for lazy blockchains”. In: arXiv preprint arXiv:2203.15968
(2022).

[22] Avail Team. Avail: A Unifiying Blockchain Network. 2024. url: https://github.com/
availproject.

19

https://blog.ethereum.org/2016/07/20/hard-fork-completed
https://blog.ethereum.org/2016/07/20/hard-fork-completed
https://vitalik.eth.limo/general/2022/06/15/using_snarks.html
https://www.o1labs.org/blog/the-many-saints-of-privacy-nullifiers-in-o1js
https://www.o1labs.org/blog/the-many-saints-of-privacy-nullifiers-in-o1js
https://github.com/o1-labs/o1js
https://datatracker.ietf.org/doc/html/rfc9114
https://datatracker.ietf.org/doc/html/rfc9114
https://github.com/availproject
https://github.com/availproject

	Introduction
	Background and Motivation
	Problem Definition: An Ideal Voting Application
	Layer Specifications
	Voting Layer: Privacy of a Single Vote
	General Overview
	ZKProof Design
	Implementation Details
	Security and Benchmarking

	Communication Layer: Gathering of All Votes
	General Overview
	Usage of DA Blockchains in the Communication Layer
	Implementation Details
	Security and Benchmarking

	Aggregation Layer: Counting Votes as a ZKProof
	General Overview
	Trustless Vote Counting through ZKProof Aggregation
	Aggregation ZKProof Design
	Censorship Resistant Aggregation
	Accepting the Maximum Condition
	The Parallel Aggregation Tree
	Implementation Details
	Security and Benchmarking

	Settlement Layer: Optimizing Verifiability and Performance
	General Overview
	Implementation Details
	Minimizing the Amount of Data Stored in the Settlement Layer
	Security and Benchmarking

	Storage Layer: Verifiable Elections for All Times
	Connecting the Storage and the Settlement Layer
	Implementation Details and Security Considerations

	Some Additional Notes on Full Anonymity

	Conclusion

